The Who, What, Where, When and Sometimes, Why.

Emerging Areas in Early Detection

Some tools under study for breast cancer screening and early detection are discussed below.

More research is needed to know whether these tools may play a role in breast cancer screening for all women or certain groups of women at higher than average risk.

Molecular breast imaging (nuclear medicine imaging of the breast)

Molecular breast imaging (also called nuclear medicine breast imaging) uses a short-term radioactive agent (called a tracer). The tracer is given by vein (through an IV) and is absorbed into tissues, including the breast.

Breast cancer cells appear to absorb more of the tracer than healthy cells absorb. The cancer cells can then be imaged with a special camera.

A woman getting molecular breast imaging is positioned in a similar way as with mammography. Each breast is pressed between 2 plates and the machine takes images.

Molecular breast imaging is under study for use in breast cancer screening, including screening for women with dense breasts [86]. It’s also under study for use in breast cancer diagnosis and staging.

Breast-specific gamma imaging (BSGI)

Breast-specific gamma imaging (BSGI) is a molecular breast imaging technique. The radioactive tracers used in BSGI emit gamma rays that are tracked by a special camera.

Positron emission mammography (PEM)

Positron emission mammography (PEM) is a molecular breast imaging technique. The radioactive tracers used in PEM are sugars.

PEM uses positron emission tomography (PET), a test that shows how much sugar is consumed by cells, along with a special camera to image cells. Cancer cells tend to consume more sugar than normal cells and this can help identify tumors.

A regular PET scan machine can’t give a detailed enough image to find early stage breast cancers [87]. It doesn’t have the special camera used in PEM.

Radiation exposure

A main concern about the use of BSGI and PEM for screening is the amount of radiation exposure to the whole body. Because the radiation (in the tracer) is delivered through an IV, other parts of the body (not just the breasts) are exposed to the radiation.

Even with modern machines, BSGI and PEM give a dose of radiation to the body that ranges from about 2-21 times higher than the dose from a mammogram [88-89].

Ways to lower the amount of radiation exposure are under study [90].

Use of BSGI and PEM

BSGI and PEM are not part of breast cancer screening guidelines.

Although they are still under study, BSGI and PEM are sometimes used in clinical practice, but are not widely available.

Contrast-enhanced mammography (CEM)

Contrast-enhanced mammography (CEM) is a breast imaging technique. Compared to standard mammography, CEM makes a stronger contrast between a breast tumor and the surrounding tissue. The image is somewhat similar to a breast MRI image.

A contrast agent is given by vein (through an IV) before the procedure. More X-ray images of the breast are taken than with a standard mammogram, so there’s slightly more radiation exposure.

Some study findings show CEM may be useful in addition to mammography in some women at higher than average risk of breast cancer [91-92]. This includes women at higher risk of breast cancer for whom breast MRI isn’t recommended, and women at higher risk who can’t have breast MRI for medical reasons [91-92].

CEM is also under study for use as a follow-up test after an abnormal finding on a mammogram [91-92].

CEM is not widely available.

Abbreviated breast MRI (fast breast MRI)

Breast magnetic resonance imaging (MRI) uses magnetic fields to create an image of the breast.

An abbreviated breast MRI (fast MRI) takes fewer images than a typical breast MRI. Since fewer images are taken, an abbreviated MRI procedure is faster for the patient than a typical MRI. And, with fewer images, it takes less time for the radiologist to interpret the images than with a typical MRI.

Whether abbreviated breast MRI is useful in breast cancer screening is under study [93-96,149].

Learn more about standard breast MRI.

Clinical trials of emerging screening methods

If you’re interested in joining a clinical trial studying new screening methods, talk with your health care provider.

Susan G. Komen® Breast Cancer Clinical Trial Information Helpline

If you or a loved one needs information or resources about clinical trials, call our Clinical Trial Information Helpline at 1-877 GO KOMEN (1-877- 465- 6636) or email in collaboration with Susan G. Komen® offers a custom matching service to help you find clinical trials on breast cancer screening.

Learn more about clinical trials.

Our commitment to research

At Susan G. Komen®, we are committed to saving lives by meeting the most critical needs in our communities and investing in breakthrough research to prevent and cure breast cancer. Our Research Program is an essential driving force for achieving this mission. Since our inception in 1982, Komen has provided funding to support research grants that have greatly expanded our knowledge of breast cancer and helped us understand that breast cancer is not just a single disease but many diseases, unique to each individual.

To date, Komen has provided about $1.1 billion to researchers in 47 states, the District of Columbia and 24 countries to support research that has resulted in a better understanding of breast cancer; earlier detection; personalized, less invasive treatments for what was once a “one-treatment-fits-all” disease; and improvements in both quality of life and survival rates.

Learn more about our continuing investment in research and the exciting research that we are funding, because nothing would make us happier than ending breast cancer forever. 

Susan G. Komen research spotlight

Komen funds research to study new methods of early detection.

One new method is breast ultrasound tomography, a tool that uses ultrasound technology. Breast ultrasound tomography may give information on breast density by measuring the speed that sound waves travel through the breast [97].

Komen is also funding research on the use of molecular breast imaging for breast cancer screening in women with dense breasts.

Other Komen-funded research is using big data to develop a risk prediction tool to identify women at high risk for having a breast cancer missed by mammography. These women may be diagnosed with later stage breast cancer despite regular mammography screening.

Learn about the latest Komen-funded research on breast ultrasound tomography, early detection software, molecular breast imaging, photoacoustic tomography (an imaging technique) and other topics in our Stories of Discovery.  

A note about thermography

Thermography uses infrared light to measure temperature differences on the surface of the breast. However, there’s no solid scientific evidence thermography measures of heat can help find breast cancers [98].

The U.S. Food and Drug Administration (FDA), the American College of Radiology and the National Comprehensive Cancer Network (NCCN) do not support the use of thermography as a breast screening tool [3,87,99-100].

In 2011, 2017 and 2019, the FDA issued consumer updates warning the public about misleading claims by thermography practitioners and manufacturers on the screening benefits of this tool [99-100]. To read the full 2019 update, visit the FDA website

Updated 05/12/21